Advanced Structured Prediction

Advanced Structured Prediction

About the Book

An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs.

The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components.

These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

Contributors
Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný

Read more
Close

Neural Information Processing series Series

Log-Linear Models, Extensions, and Applications
Perturbations, Optimization, and Statistics
Dataset Shift in Machine Learning
An Introduction to Lifted Probabilistic Inference
Advanced Structured Prediction
Optimization for Machine Learning
Probabilistic Models of the Brain

About the Author

Sebastian Nowozin
Decorative Carat

About the Author

Peter V. Gehler
Decorative Carat

About the Author

Jeremy Jancsary
Decorative Carat

About the Author

Christoph H. Lampert
Decorative Carat

By clicking submit, I acknowledge that I have read and agree to Penguin Random House's Privacy Policy and Terms of Use and understand that Penguin Random House collects certain categories of personal information for the purposes listed in that policy, discloses, sells, or shares certain personal information and retains personal information in accordance with the policy. You can opt-out of the sale or sharing of personal information anytime.

Random House Publishing Group