Case Studies in Neural Data Analysis

Case Studies in Neural Data Analysis

A Guide for the Practicing Neuroscientist

About the Book

A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data.

 

As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis.

The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference.

A version of this textbook with all of the examples in Python is available on the MIT Press website.

Read more
Close

Computational Neuroscience Series

Modeling Neural Circuits Made Simple with Python
Principles of Brain Dynamics
Metabolism of the Anthroposphere, second edition
Neural Control Engineering
An Introductory Course in Computational Neuroscience
From Neuron to Cognition via Computational Neuroscience
Case Studies in Neural Data Analysis
The Computational Brain, 25th Anniversary Edition
Visual Cortex and Deep Networks
Brain Computation as Hierarchical Abstraction
View more

About the Author

Mark A. Kramer
Decorative Carat

About the Author

Uri T. Eden
Decorative Carat

By clicking submit, I acknowledge that I have read and agree to Penguin Random House's Privacy Policy and Terms of Use and understand that Penguin Random House collects certain categories of personal information for the purposes listed in that policy, discloses, sells, or shares certain personal information and retains personal information in accordance with the policy. You can opt-out of the sale or sharing of personal information anytime.

Random House Publishing Group