Learning Kernel Classifiers

Learning Kernel Classifiers

Theory and Algorithms

About the Book

An overview of the theory and application of kernel classification methods.

Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
Read more
Close

Adaptive Computation and Machine Learning series Series

Learning Theory from First Principles
Veridical Data Science
Foundations of Computer Vision
Fairness and Machine Learning
Probabilistic Machine Learning
Machine Learning for Data Streams
Learning Kernel Classifiers
Introduction to Online Convex Optimization, second edition
Machine Learning from Weak Supervision
Probabilistic Machine Learning
View more

About the Author

Ralf Herbrich
Decorative Carat

By clicking submit, I acknowledge that I have read and agree to Penguin Random House's Privacy Policy and Terms of Use and understand that Penguin Random House collects certain categories of personal information for the purposes listed in that policy, discloses, sells, or shares certain personal information and retains personal information in accordance with the policy. You can opt-out of the sale or sharing of personal information anytime.

Random House Publishing Group