Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

About the Book

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Read more
Close

Adaptive Computation and Machine Learning series Series

Learning Theory from First Principles
Veridical Data Science
Foundations of Computer Vision
Fairness and Machine Learning
Probabilistic Machine Learning
Machine Learning for Data Streams
Learning Kernel Classifiers
Introduction to Online Convex Optimization, second edition
Machine Learning from Weak Supervision
Probabilistic Machine Learning
View more

About the Author

Lise Getoor
Decorative Carat

About the Author

Ben Taskar
Decorative Carat

By clicking submit, I acknowledge that I have read and agree to Penguin Random House's Privacy Policy and Terms of Use and understand that Penguin Random House collects certain categories of personal information for the purposes listed in that policy, discloses, sells, or shares certain personal information and retains personal information in accordance with the policy. You can opt-out of the sale or sharing of personal information anytime.

Random House Publishing Group